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We discuss recent work on the development and analysis of low-concentration 
series. For many models, the recent breakthrough in the extremely efficient no- 
free-end method of series generation facilitates the derivation of 15th-order 
series for multiple moments in general dimension. The 15th-order series have 
been obtained for lattice animals, percolation, and the Edwards Anderson Ising 
spin glass. In the latter cases multiple moments have been found. From 
complete graph tables through to 13th order, general dimension 13th-order 
series have been derived for the resistive susceptibility, the moments of the 
logarithms of the distribution of currents in resistor networks, and the average 
transmission coefficient in the quantum percolation problem, l lth-order series 
have been found for several other systems, including the crossover from animals 
to percolation, the full resistance distribution, nonlinear resistive susceptibility 
and current distribution in dilute resistor networks, diffusion on percolation 
clusters, the dilute Ising model, dilute antiferromagnet in a field, and random 
field Ising model and self-avoiding walks on percolation clusters. Series for 
the dilute spin-l/2 quantum Heisenberg ferromagnet are in the process of 
development. Analysis of these series gives estimates for critical thresholds, 
amplitude ratios, and critical exponents for all dimensions. Where comparisons 
are possible, our series results are in good agreement with both z-expansion 
results near the upper critical dimension and with exact results (when available) 
in low dimensions, and are competitive with other numerical approaches in 
intermediate realistic dimensions. 
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1. I N T R O D U C T I O N  

Professor C. Domb was a dominating force behind much of the 
groundbreaking work on the study of critical phenomena from exact series 
expansions. His major contributions in this problem include work on 
geometrical models such as percolation and lattice animals, and the 
development of the idea of using ratio methods to obtain critical exponents 
from the analysis of series. Excellent accounts of the early work can be 
found in Vols. 2 and 3 of the Phase Transitions and Critical Phenomena 
series (~'2~ edited by Prof. Domb and the late Prof. M.S. Green. An 
introductory account of series for percolation processes was written by 
Professor Domb (3) for Percolation Structures and Processes. That article 
contains an excellent description of the parallels between concentration 
series for percolation and temperature expansions for the Ising model. 

In the present paper we discuss the study of geometrical and other 
characteristics of disordered systems via multidimensional low-concentra- 
tion series. This work extends Professor Domb's early efforts and thus we 
are happy to review this material for the volume in his honor. For  reasons 
of space, we do not attempt to discuss thermal problems, high-concentra- 
tion series, or dimension-specific methods of series generation (although 
Prof. Domb has recently worked on these problems). Emphasis is placed 
on those problems for which series for multiple moments are available in 
general dimension. A discussion of series generation methods and of the 
analysis methods that can be utilized efficiently when multiple moments are 
available is given in the next section. The final section contains a summery 
of recently published results for a variety of problems and some new expo- 
nent estimates for resistor networks. 

The series expansion method is in a sense exact, as the aim is to write 
down the exact expansion of the quantity of interest (such as the free 
energy or one of its derivatives) as a series in increasing powers of some 
variable such as temperature T 1 (for magnetic systems) or concentration 
p (for percolation). This expansion is calculated on a term-by-term basis. 
The actual calculation is usually made by a computerized evaluation of the 
contributions from different graphs representing the different terms that 
contribute to the expansion up to some order in the variable T l or p. For 
example, the coefficients an in the expansion t: = 52n an pn for the mean size 
X of clusters of A atoms on a random alloy of A and B atoms are calculated 
by associating contributions to an with connected graphs consisting of n 
bonds. The numbers and types of these graphs are then enumerated to as 
high an order as possible, and the contribution from each is calculated and 
summed over. In its region of convergence the expansion would give us the 
exact solution if it could be carried to infinite order, but near the limit of 
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low (high) concentration an expansion in p (q = 1 - p) to a finite order will 
be quite reliable. When the expansion parameter is increased to some criti- 
cal value, hereafter denoted as Pc., the quantity Z exhibits a singularity and 
we wish to use the series expansion to calculate Pc and the various critical 
exponents that describe the nature of this singularity. Here and below we 
emphasize the generality of these comments. In principle the quantity Z, 
and to a lesser extent the expansion parameter p, can be arbitrary, 
although the expansion for complicated quantities may be difficult to 
actually construct. 

In practice, while the expansion does not take a closed form, series of 
over 50 terms for some problems and between 10 and 20 for many cases 
are not unusual nowadays, and enable accurate extrapolation into the criti- 
cal region in order to obtain estimates of critical exponents or tem- 
peratures. This extrapolation involves determining the best fit to some 
proposed form for the singularity that the series can give. This is often done 
by calculating Pad6 approximants to some function derived from the 
singularity. 

The early series work of Prof. Domb and his colleagues in the King's 
College group was carried out by hand. The first developments in the 
computerization of series generation are described by Martin, (4) and this 
work is especially remarkable in the context of the computer resources then 
available. The series expansion method, especially when efficient algorithms 
such as the no-free-end method (5"6) or the star-graph method (7) can be 
invoked, has an enormous future potential in the modern supercomputing 
environment. To date, only a small fraction of the computer resources that 
have been devoped to large-simulation 4 projects in critical phenomena 
have been applied to series generation. Despite this, series results are quite 
competitive with simulation estimates for nearly all problems. 

Let us compare the series and simulation approaches, which are two 
of the most common numerical methods for obtaining solutions for models 
that exhibit critical phenomena. Simulations are usually made on the 
largest sample that is feasible, with extrapolation to the infinite system 
being required for application of the results. Statistical scattering of data 
can severely complicate the extrapolation, and a common scenario is that 
a great deal of computer time may fail to lead to accurate results. It is often 
the case that the problems are in the data analysis, but the nature of the 
calculations is such that it is often very difficult to store the simulation data 
in a compact from for future reanalysis. This is an important drawback 
because it prevents the kind of critical comparisons of results which 

4 See ref. 8 for an introduction to computer simulations, and ref. 9 for an introduction to 
simulation for percolation. 
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pervade the literature on series expansions. A related method involves 
solving the system exactly (by hand or by computer) for very small 
systems. This is equivalent to the series expansion technique, since the 
latter also involves an exact solution on finite graphs. 

Both series and simulation calculations involve the two-stage process 
of data generation followed by data analysis. Data generation is usually the 
expensive part as far as computing resources are concerned. Data analysis 
is usually the more controversial stage of the project. Series have four great 
advantages over simulation. First, the most time-consuming effort, namely 
the enumeration of the graphs and the calculation of their weights, is done 
once only and can then be applied to many different problems. Calculation 
thereafter of the contribution of each graph to some averaged quantity is 
usually straightforward. Second, once different graphs are summed over, 
series data take an extremely compact form for storage, thus facilitating 
multiple analyses of each series. A single series calculation gives results 
expressed as a function of the expansion parameter, thereby summarizing 
the information for all possible choices of threshold value. Thus, the series 
method gives a real possibility of maximum utilization of all information. 
The third advantage is that because series is an enumeration rather than 
simulation approach, there are many built-in checks that can be applied to 
the data generation. Independent derivations that give exactly the same 
results strongly confirm the reliability of data, whereas statistical fluctua- 
tions complicate such cross-checks in the simulation case. The fourth 
advantage of the series method is specific to general-dimensional algo- 
rithms (a general-dimensional algorithm being one in which results are 
obtained as a general function, namely polynomial, of the spatial dimen- 
sion d). These may be considerd to be highly parallelized calculations, in 
which all values of d are treated simultaneously, and as such represent an 
extremely efficient use of computer resources. To illustrate this point in a 
very extreme way, we point out that general d series up to 15th order for 
lattice animals for, say, d=20 give exact results, whereas simulations 
would require sampling a cluster population having in excess of 102o 
elements. In this connection it should be noted that the time required in 
simulations of a given linear size of system increases drastically with 
increasing d. Beyond d = 4  simulations are usually not competitive with 
series expansions (for the cases where the latter can be used). To balance 
these advantages, we note two disadvantages of series relative to simula- 
tions for certain problems. The first is that series systems are more limited 
in physical size, and thus may fail to allow for some features that are 
specific to larger systems. The second is that while efficient simulations give 
the best results/computer hour, relatively unsophisticated simulation 
algorithms can and have given many useful estimates for interesting 
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problems. Algorithms for the generation of series require, in general, a 
basic modicum of efficiency in order for any results to be obtained. This 
means that there is a certain startup time involved before series can become 
available for any new problem. Thus, the method of choice may depend on 
the requirements of the problem and it is probably best to use both 
approaches and compare the independent results, but it can be concluded 
that series represent an extremely efficient use of computer resources for a 
given problem. 

2. SERIES G E N E R A T I O N  A N D  A N A L Y S I S  

In this section we discuss the efficient generation and analysis methods 
that we have used for low-concentration and high-temperature problems in 
general dimension. There are many other approaches to series generation 
and analysis that we do not discuss in detail for reasons of space; some of 
these are presented in other articles in this volume. Some of the methods 
that have been applied for low-concentration models will be referenced in 
the next section when different systems are discussed. 

For  most problems one can generate series for any desired property Z 
via the expansion 

Z = Z o + N ~  w(r} Zc(C) ( i)  
F 

where W(F) is the number of times (per site) that the diagram F occurs on 
an infinite lattice and zc(F) is the cumulant value of Z calculated for the 
diagram F, defined recursively by 

zc(r)=z(r)- Z zc(r) (2) 
y ~ F  

7~o is the value of Z on the Cayley tree that has the same coordination 
number as the hypercubic lattice on which we wish to derive the series. In 
Eq. (2), 7 c F means that the sum is carried out over all diagrams 7 which 
can be obtained from F by removing one or more bonds. In this 
formulation a diagram is a collection of bonds and )~c(F) vanishes for all 
disconnected diagrams. One can interpret )~c(F) as the contribution to )~ 
which depends on all bonds in the diagram F. [Contributions to ;~ which 
depend on a subset ~ of bonds of F were included in )G,(?) in a lower 
order.] We will consider several examples in which Z is a type of 
generalized susceptibility, i.e., of the form 

822/58/3-4-8 
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where [-]p denotes configurational average, v• is unity if sites i and j are 
connected in a given configuration and zero otherwise, and Zu is some two- 
point function. The most important properties of )~c(F) are (a) it vanishes 
if the diagram F is disconnected and (b) it depends on all n bonds in the 
diagram F. Therefore, the contribution of F to the sum in Eq. (1) is of nth 
order in the coupling constant p, T -~, or any other perturbation away 
from a noninteracting problem. For most problems it is a simple task 
to evaluate the necessary z(F)'s. For example, to generate the high- 
temperature expansion for the susceptibility of the Ising model by this 
approach, one would have to evaluate z(F), in this case the susceptibility, 
for all clusters having up to n bonds, where n is the desired order in p. 
Usually the limit on n is fixed by the need to tabulate the weak embedding 
constants W(F) for all diagrams with up to n bonds. We have carried 
out (5'6) such tabulations for all diagrams with up to 13 bonds for the 
general d-dimension hypercubic lattices. Also, up to this order we have 
constructed a complete list of diagrams which can be embedded in a given 
diagram, in order to implement the recursive definition of the cumulant 
Zc(F). The above information enables us to calculate the series expansion 
for any problem in which the property )~ depends on the topology (but not 
the shape) of a given diagram. We will refer to this method as the "brute 
force" approach. In principle, one can evaluate series for properties which 
depend on the geometrical shape of the diagrams, but the required tabulation 
of diagrams is very time consuming. 

For a wide class of problems we can simplify the above procedure. To 
do this, we eliminate from consideration all diagrams having one or more 
free ends. This is done by constructing the appropriate renormalized 
Hamiltonian as described in refs. 5 and 6. The renormalized Hamiltonian 
differs from the original Hamiltonian in that it includes a suitable site- 
dependent potential. For this procedure it is essential that the density 
matrix be expressible as the product of density matrices of individual 
bonds. Thus, this process is not applicable without severe modification to 
quantum systems. However, it can be applied in a straightforward way 
to replicated Hamiltonians which are used to describe various random 
problems. Usually the final renormalized Hamiltonian can be expressed 
without recourse to replica indices. (This is the case for the percolation and 
spin-glass problems described below.) We mention this lest the reader 
worry about the validity of the limit in which the number of replicas goes 
to zero. In this scheme, referred to as the "no-free-end (NFE) method," one 
carries the sum in Eq. (1) only over diagrams with no free ends. The price 
for this simplification is that one must deal with a renormalized 
Hamiltonian, but usually this represents dramatic savings in computational 
effort. (For 15 bonds, NFE diagrams represent about 0.1% of all 
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diagrams.) At present our list of weak embedding constants (6) of NFE 
diagrams consists of all diagrams (about 800 in number) with less than 
16 bonds. This method has enabled the construction of many heretofore 
unmanageable series, some of which are described below. 

Once the series has been generated, it must be analyzed. An early 
account of different methods of series analysis was given by Gaunt  and 
Guttmann (~~ and a more recent one by Guttmann. (11~ Clearly, all the 
different methods of series generation must give the same result for each 
term of the series, since these are exact quantities. In contrast, different 
analysis methods give slightly different results, depending on the assump- 
tions involved and the authors' weighting of different factors. When 
selecting a method for a particular series one must take into account 
variables such as the series length, the number of different series available 
in each dimension, and the expected contributions from analytic parts or 
from confluent singularities. One does not wish to have too many variable 
parameters for shorter series, and it is desirable to be able to utilize the 
redundancy that can be found from multiple moment series. (Here higher 
moments usually correspond to higher derivatives of the free energy with 
respect to a field at the critical point.) It is also important that there be 
some easily definable criterion for convergence of different estimators. For  
multiple series in general dimension, some elementary consideration of 
efficiency is crucial. We present below a summary of those methods that we 
have found useful for our multidimensional low-concentration series. The 
reader is referred to the above reviews for a general summary, and to the 
discussion of analysis methods for percolation problems in Section 3 of 
ref. 12 for details of our approach. 

We have invoked a combination of powerful methods of series analysis 
which utilize a graphical approach. (12 15~ The graphical approach greatly 
increases our ability to scan efficiently over many trial threshold values. 
These methods make allowance for the effect of nonconfiuent corrections to 
scaling. Neglect of these effects led to serious discrepancies between the 
results of series expansion analyses and renormalization group calculations 
in the past. The analyses involve preliminary transforms to eliminate the 
interference that analytic or confluent correction terms may have on the 
dominant exponent and threshold values. Pad~ approximants are then 
obtained for the transformed series and these are plotted for different 
values of the critical fugacity, temperature, or threshold. 

We assume that the series we wish to study, denoted by H(p) in 
general, has the form for most dimensions of 

H(p)=A(p~.-p)-h[l+a(p~,-p)~+b(pc-p)+ --.] (4) 

where h is the critical exponent that we wish to determine. At the upper 
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critical dimension there may be logarithmic corrections and these entail 
fitting to the form 

H(p)=(pc- p) h[log(pc- p)[~ (5) 

We use two complementary approaches, both essentially based on 
threshold-biased Pad6 approximants to transformed series (threshold- 
biased means that the estimated value of the critical exponent depends 
significantly on the value of the threshold Pc). One is to scan over a wide 
range of different trial thresholds and select that which exhibits optimal 
convergence. Our alternative approach, which avoids such a scan and is 
based on an old method (16) (see also ref. 15), which involves term-by-term 
dividing two series with the same critical threshold and then studying the 
"divided" series. If we begin with two series expansions Y=Zj=o,n  YjPJ 
and Z = Z j = 0 , n  zip j, then we shall denote the term-by-term divided series 
Zj=o.n(YfZ/) P J, by Y+ Z. This divided series should have critical behavior 
with a threshold at p = 1 and a dominant critical exponent equal to the 
difference between the exponents of the two original series plus 1. The 
division is expected to introduce and analytic correction to scaling [i.e., 
A1 = 1 in Eq. (4)]. If this correction has a large enough amplitude, it could 
provide a nice convergence region for the evaluation of the dominant expo- 
nent. Hopefully, this analytic correction is sufficient to swamp the non- 
analytic correction of the individual series which is still present. This 
method avoids the problems associated with uncertainties in Pc, but 
convergence is poorer owing to competing effects of the two corrections. 
One possible way to obtain exponents from a single series H(p) when we 
are uncertain of the exact threshold is to utilize the above approach with 
series Y being [-H(p)] 2 and series Z being H(p) itself. We call the resultant 
series, which has a critical exponent of h + 1, a "self-divided" series, and 
denote it by H sd. 

For both approaches we use two different algorithms, denoted by M1 
and M2, for cases without logarithmic corrections. In M1, (~7) we study the 
logarithmic derivative of 

p) dH(p) 
B(p)=hH(p)-(pc-  dp (6) 

which has a pole at p~ with residue - h + A  1. For a given value of Pc we 
obtain graphs of A I versus input h for all Pad6 approximants, and we 
choose the triplet p~., h, A 1 where all Pad6s converge to the same point. In 
the M2 method, ~13'~4'17) we first transform the series in p into series in the 
variable y, where 

y = 1 - (1 - p/p~)~ 
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and then take Pad~ approximants to 

d 
G(y) = A I(Y - 1) ~yy l o g [ H ( p ) ]  (7) 

which should converge to - h .  Here we plot graphs of h versus the input 
A1 for different values of Pc. and choose again the triplet Pc, h, A1, where 
all Pad6s converge to the same point. When A l =  1.0 this method 
reduces (14) to the usual d log Pad6 method with threshold bias. 

The analysis of the logarithmic form involves writing 0 = zh and then 
taking Pad6 approximants to the series 

g ( p ) = ( - h )  l ( p c - p ) l o g ( p c . - p ) E H ( p ) ' / H ( p ) - h / ( p ~ , - p ) ]  (8) 

We can show that the limit of g(p) as P ~ P c  is z. We take Pad6 
approximants to g at the exact or most reliable estimate of Pc to obtain 
graphs of 0 as a function of h. 

We note that for both the term-by-term divided series and the tem- 
perature-biased series, it is important to use both M1 and M2 for each 
case. This is because for certain test (18' 19) and well-behaved model (17) series 
the M2 analysis gives the correct dominant exponent estimate with inter- 
section regions at the correct A~ and also at resonance A~/n values, where 
n = 2, 3 .... Thus, it would be difficult to identify the correct A ~ value if we 
did not also have the M1 method which is resonance free. (19) We do not 
use M1 alone, as test series work suggests that it gives zll estimates which 
are less accurate than the M2 ones when A~ is far from an integer. The use 
of two methods also eliminates the possibility that accidental spurious 
convergence regions will be confused with the correct results. We also note 
that Pad6-based methods can be unduly influenced by the early terms of 
some series, when large analytic parts may be involved. Hence we have 
always studied both the series generated and several derivatives of the 
series when using Pad6. In all cases we quote results that do not depend 
on the number of derivatives. 

For  certain problems, mainly the cases where we only had the shorter 
( ~  11 terms) series, it appeared that it would not be possible to resolve the 
confluent corrections. For these cases we have used the nonhomogeneous 
differential Pad6 approximant (2~ (NHDP)  in a nongraphical version. This 
method is especially suited to handling analytic .corrections and yields 
reasonable results. It is especially useful when dealing with the divided 
series, where the analytic corrections dominate in some circumstances. (~9) 

Critical exponents are universal for a given problem and dimension, 
whereas threshold values are lattice dependent. Although we have obtained 
long series for hypercubic lattices only, one can use the good exponent 
estimates from the hypercubic series to improve the threshold estimates for 
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shorter series on other lattices. In addition to the evaluation of exponents 
and thresholds, one can study the amplitudes [A in Eq. (4)] of the series. 
The amplitudes themselves are not universal, but certain amplitude ratios 
are universal and therefore of considerable interest. The criterion of 
amplitude ratio is just as valid as the criterion of exponent value to 
distinguish between universality classes, and as we shall see in the next 
section, the amplitude ratio criterion is extremely useful for concentration 
variable systems. 

A necessary condition for obtaining a universal amplitude ratio is that 
the ratios of the corresponding series exhibit a cancellation of the dominant 
critical exponents. Such ratios may be between low- and high-concentra- 
tion series for the same quantity, or products of different moments of 
series (12'21~ of, for example, the cluster size. In the former case each 
amplitude must be obtained independently (m/and then a ratio taken. This 
requires a high-precision determination of both threshold and dominant 
exponent, and requires long series in both concentration limits. In the latter 
case, series are only needed in one concentration limit, and a slight error 
in threshold has a much smaller effect. 

There are two especially useful methods of analysis for the study of 
amplitude ratios of different series in the same concentration variable. One 
is the trivial procedure (2~) of multiplying the different series and then taking 
Pad6 approximants to the resulting series, using various trial input 
threshold values. We find that in all cases studied the variation of ratio 
thoughout the entire region of uncertainty in threshold is extremely small 
relative to the scatter between the different Pad6 approximants. This insen- 
sitivity, combined with the fact that no input of exponent value is required, 
makes this method extremely useful, even for relatively short series. It is 
precisely the possibility of making this analysis that so enhances the 
importance of obtaining multiple moment series. In many cases of applica- 
tion of the above method, the corrections to scaling approximately cancel. 
An alternative method (15) involves term-by-term multiplication and divi- 
sion of the series to give a diverging series with the critical point and the 
exponent both equal to unity. The residuum of the pole at p = 1 yields a 
universal combination of the appropriate amplitude ratio and the 
exponents. 

3. SPECIFIC A P P L I C A T I O N S  

3.1. G e o m e t r y  

Percolation and lattice animals are two of the most interesting classic 
geometrical models which exhibit phase transitions. For both problems 
general-dimensional low-concentration series were calculated to 15th order 
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in general dimension for hypercubic lattices. (22'12/ For percolation a 16th 
term has been published for the mean cluster size on the square lattice, (23) 
and for lattice animals longer series are available for several quantities in 
two dimensions. (24'25) We may relate the two models by noting that the 
geometry of a diluted network is described by that of the infinite cluster at 
the percolation threshold for clusters of size smaller than the percolation 
correlation length ~. For P<Pc, it should be described (2e by lattice 
animals for clusters larger than {. One expects that for p < Pc and suf- 
ficiently large systems all universal quantities will be given by the animal 
values. For finite systems one expects a crossover from the percolation 
values to the lattice animal values. We now summarize some results for 
lattice animals and percolation, and discuss the nature of the crossover. 

3.1.1. Lat t ice Animals .  Let us denote by A(n) the number of 
possible connected clusters with n bonds (or sites) embedded in a 
d-dimensional lattice. These clusters are called lattice animals, and they 
describe the statistics of dilute branched polymers. They are connected to 
certain lattice gauge theories (27) and can be mapped (28) onto the Yang-Lee 
edge singularity, which occurs at the edge of the distribution of zeros of the 
partition function in the complex magnetic field for classical spin models. 
The generating function F(K) can be written as F(K)= Zn A(n) Kn, where 
K is the fugacity on each bond. F(K) can be viewed as the free energy of 
the lattice animals. 

Exact results for some of the critical exponents for lattice animals have 
been determined in up to four dimensions from several different techniques 
and are summarized in the introduction to ref. 22. However, since the 
upper critical dimension/29) is 8, this still leaves several dimensions where 
detailed numerical information was not available for lattice animals. The 
generation and analysis of 15th-order series for F(K) and study of its 
second derivative )~(K)=O2F/~K 2 were undertaken in order to obtain 
accurate estimates of the dominant exponent 7a = 7H and of the correction 
exponent A 1. 

These results for both the exponents are in excellent agreement with 
the third-order e-expansion values from the Yang Lee model. (3~ This 
strongly suggests that the mapping between the two systems extends to 
the first irrelevant operator. We find 7H=0.90_+0.03, 0.70+0.04, and 
0.59 _+ 0.03 for d =  5, 6, and 7, respectively, and A 1 = 1.3 _+ 0.2, 0.8 • 0.2, 
0.65+0.15, 0.5_+0.2, and 0 .4+0.2  for d = 3 ,  4, 5, 6, and 7, respectively. The 
lattice-dependent critical fugacity 2 -1 = Kc values were also found to a high 
degree of accuracy in ref. 22. We quote 2~ = 16.32_+0.01, 22.043 ___0.0002, 
27.71 +0.02, and 33.31 _+0.02 for hypercubic lattices in d = 4 ,  5, 6, and 7, 
respectively. 
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:3.1.2. P e r c o l a t i o n .  Early series work for the percolation problem 
is nicely described by Domb in Chapter 1 of ref. 3. The generating function 
for bond percolation has been shown (31) to be identical to the partition 
function for the Ports model when q, the number of states, approaches one, 
and it is particularly fitting to note here that the Potts model is named 
after R. Potts, who was a student of Prof. Domb when the "Potts" model 
was originated. When exact results (32) for the Potts model in 2D were first 
developed, their extension to the percolation limit agreed with the early 
series ~ estimate of Harris eta/. (33) (The critical exponent ~ characterizes 
the divergence of the second derivative of the percolation "free energy" or 
mean number of clusters w.r.t.p.) However, the extrapolated 7 estimate 
(7 being the exponent of the mean cluster size) appeared to contradict 
exponent estimates from the early series work for percolation, and this 
suggested to some people that hyperscaling may be violated. The recon- 
ciliation between exact results from the Potts model and the direct series 
expansions in 2D was eventually made by recognizing the importance of 
corrections to scaling. This is summarized in Chapter 17 of ref. 3. 

Since the upper critical dimension for percolation/33) is 6, there have 
been some doubts (see the discussion in ref. 21, p. 3633) over the extension 
of the validity of the e expansion down to 2D. The exponent estimates from 
the third-order expansion are not far from the exact results in 2D, but they 
do not give decisive proof either way. The amplitude ratios between low- 
and high-concentration series were also most problematic for percolation, 
since they disagreed with simulation and e-expansion (34~ results in 2D. 
To shed light on these questions, we studied the moments Fj(p) of the per- 
colation cluster size distribution, which are defined to be F j ( p ) =  
[Zr W(F) n(F)J]p, with n(F) the number of sites in the cluster F. They 
are believed to behave as 

Fj(p)=Aj(pc- p) ~ J [ l + a j ( p c - p ) ~ ' +  ...] (9) 

where 7 j = 7 +  ( j - 2 ) A .  The gap exponent z/ is equal to 7+fi ,  where fl is 
the critical exponent of the percolation "order parameter," known as the 
percolation probability. These moments were intially calculated to l l th 
order, (21) and have recently been extended to 15 terms. (12/ 

To complement the series results, e-expansion calculations for general 
dimension and exact results in one dimension and on "infinite"-dimensional 
Cayley trees have been obtained (21/ for the amplitude ratios wherever 
possible. Excellent agreement has been obtained for all points of overlap. 
The l lth-order series already exhibited this agreement for the amplitude 
ratios right down to 2D, (21) and the longer series and alternate analysis 
methods applied in ref. 12 confirmed this (see Table VI of ref. 12.) 
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The availability of series for several moments enables the determina- 
tion of two different critical exponents for each dimension. This possibility 
is of particular interest for percolation, where one outstanding problem in 
recent years has been the accurate determination of the 3D threshold and 
exponent values. In particular, there has been a lot of interest in the 
determination of the sign of the exponent q [ = 2 - d 7 / ( 2 / ~ + 7 ) ] .  This 
aspect was part of the motivation for the generation of the 15-term series. 

In parallel with our latest 15th-order series, extension of both low- and 
high-concentration series for both the sc and bcc lattices was undertaken 
by Sykes and Wilkinson. ~35) The only overlap is in one of the low- 
concentration 14th-order series on the sc lattice. Both enumerations agree, 
providing a powerful check on both derivations. From the series of refs. 12 
and 35, threshold values of 0.2488_+0.0002 and 0.18025_+0.00015 are 
found for the three-dimensional bond problem on the simple cubic and 
body-centered cubic lattices, respectively, and 0.16005_+0.00015 and 
0.11819 _+ 0.00004 for the hypercubic bond problem in four and five dimen- 
sions, respectively. The direct exponent estimates are ~'= 1.805_+0.02, 
1.435__0.015, and 1.185___0.005 and /~ = 0.405 _+ 0.025, 0.639_+0.020, and 
0.835 _+ 00.005 in three, four, and five dimensions, respectively. The critical 
exponent and threshold values in 3D are in excellent agreement with the 
most recent simulation results, (36) and indicate that r/ is negative for 3D. 
From the longer series outstanding agreement was also obtained with 
e-expansion results for the dominant and correction exponent values in 
higher dimensions (see Table I in ref. 12). 

3.1.3. Crossover f rom Percolat ion to Lattice Animals.  In 
order to study the lattice animal-to-percolation crossover, a negative field 
can be introduced (37~ into the definition of the percolation susceptibilities, 

Zk(P, h)= ~ W(F)n(F)ke n~r)h (10) 
F 

l l th-order series were developed for the first few monqents. The effective 
gap exponent was determined from the term-by-term division method ~5' 16) 
with N H D P  approximants. A rapid crossover was observed ~3v) from the 
percolation value ( h = 0 )  to the animal value of unity, over a range of 
h ~<0.03. A similar crossover was observed in the amplitude ratios. The 
dependence of nonuniversal quantities on p can be determined by the 
analysis of term-by-term divided series at an h-dependent critical point. For 
example, the perimeter ratio, which is defined to be the ratio of the average 
numbers of perimeter sites to cluster sites in the whole range between p = 0 
and p = p c ,  was studied. It was observed that this ratio changes over 
continuously from its percolation value of (1-p~.)/p~ at P=Pc to its 
animal value at p = 0. 
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3.2. Resis tor  N e t w o r k s  

In addition to the study of the geometry of diluted networks, it is of 
considerable importance to elucidate their transport properties. For  
two transport questions that are of special interest, 13th-order low- 
concentration series have been obtained via the "brute-force" method, for 
general hypercubic lattices. The first problem concerns the accurate 
measurement of the conductivity exponent (38-41~ t, which characterizes the 
conductivity in the case where we place a unit resistance on each bond. An 
accurate value of t is important for testing the validity of the Alexander- 
Orbach scaling conjecture (42) and in order to use this exponent in different 
applications. The exponent t can be calculated via scaling results from the 
resistive susceptibility. (38) The resistive susceptibilty of a resistor network is 
defined to be ) f ~ =  [ ~ j  k v~Ro.]p, where R U is the resistance between sites i 
and j. We denote the critical exponent of the kth moment of the resistive 
susceptibility by 7~ ) and its dominant amplitude by A~ ~. From scaling one 
expects (38) 7~)=  7 + k~R (where ~e is defined to be the critical exponent of 
the average resistance between two connected points) and t--~R + (d -2 )v ,  
thereby giving an estimate of t. The exponent v is the critical exponent of 
the percolation correlation length. For  the specific case of the square lat- 
tice, 16 terms of the resistive susceptibility have been found by Essam and 
Bhatti. (43~ We discuss below some conclusions from previously unpublished 
analyses of the resistive susceptibility series. The second special transport 
question is that of the nature of the current distribution in resistor 
networks. (44) To resolve this question we studied the moments of the 
logarithms of the currents via 13th-order series. (45) Some other transport 
problems that we have studied with low-concentration series to 1 l th order 
are the full resistance distribution, (46) nonlinear resistor networks, (47) and 
diffusion on percolating clusters./48) 

3.2.1.  L inea r  R e s i s t a n c e .  The evaluation of the critical exponent 
t has been the focus of considerable attention over the last 10 years. Unlike 
the static percolation exponents, there are no exact results in 2D, and there 
has been a fair amount of disagreement among estimates obtained via 
series, simulation, and experiment. Series for ZR =Z~ 1 and for the conduc- 
tive susceptibilty Zc (which has the critical exponent ~c = 7 -  ~R) were first 
developed by Fisch and Harris (38) to 10th order in 1978. This work is the 
basis for the application of the series approach to transport problems. 

The resulting series were reanalyzed using the methods discussed in 
Section 2 by Alder ~39) in 1985. In this reanalysis the results were biased to 
the best available threshold (Pc), v and correction to scaling estimates, and 
the assumption was made that A1 is the same as for usual percolation. The 
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estimates in dimensions above three were not greatly affected by the dif- 
ferent analysis. In 3D the central t estimate was raised from 1.95 to 2.04, 
but the error bounds still overlapped. In 2D the analysis of the ref. 38 series 
reduced the t value from 1.43 to 1.36 [from ~R=(TR--TC)/2] or to 1.31 
(from ~e=TR--7 ) .  From the third way to estimate t (using ~ R = ? - T c ) ,  
one obtains t = 1.4, but it can be argued (39) that the estimate of ~ was less 
reliable. 

With their longer 2D series Essam and Bhatti (43) found 
7R=3.65_+0.02 and 7c=1.1_+0.1,  with similar analysis methods. This 
leads to further reduction of the central t estimate to 1.26 (from 
~R=TR--7) ,  t =  1.28 (from ~R= (~R--7C)/2), or t =  1.29 (from ~R=7--7C) .  
These results are potentially problematic, since the exact ~/= 1.238 does not 
sit midway between the 7R and 7c estimates, contrary to the scaling 
predictions./38) 

There are at least three possible ways to reconcile scaling with these 
measurements: (i) The ?c estimate is indeed less reliable. Then we must 
quote t =  1.26, in significant disagreement with simulations, (4951) which 
measure t = 1.2993 + 0.0020. ~51) (ii) The ?R estimate is less reliable, giving 
t =  1.29, closer to the simulation value. (iii) XR and Zc do not have the 
same nonanalytic corrections to scaling as do the thermal quantities. If we 
do not know what the correction to scaling is, then we can consider the 
divided series ZR + Zc, in the hope that the induced analytic correction will 
overide the unknown nonanalytic corrections. This analysis gives/41~ 
t ~ 1.27 if we assume the correction to scaling for usual percolation is not 
swamped by the analytic term, and 1.23 with an analytic correction. In 
both cases only M2 gave convergent results. The severe degradation of con- 
vergence seen here could be indicative of a significant nondivergent term 
and therefore we explicitly quote the results of the analysis of the 
derivatives. The first derivative of the divided series gives t = 1.275 ___ 0.050, 
and the second t = 1.270___ 0.050 from M2, independent of the correction 
assumptions. We obtain convergent results from M1 with the second 
derivative only and quote t = 1.29 __ 0.02 for this case. The other possibility 
is that the series may have logaritmic corrections. This last possibility can 
be explored by fitting to the form of Eq. (5) for various trial 0 values. The 
best convergence is for small negative 0; for example, for 0 = 0 ,  
?R = 3.66 _ 0.02 and ?c = 1.01 _+ 0.02; for 0 = -0.125, 7R = 3.68 _ 0.02 and 
?c = 1.03 _+ 0.02; and for 0 = -0.200, 7R = 3.70 _+ 0.02 and 7c = 1.07 + 0.02; 
giving t=1.32,  1.33, and 1.34 from ( 7 R - 7 c ) / 2  for 0 = 0 ,  -0 .125,  and 
-0 .2 ,  respectively. Centering of 7 occurs around 0 = -0.2.  

There has recently been renewed interest in the estimate of t in three 
dimensions, and so we decided to calculate the moments of ZR to 13th 
order in general dimension. These series have not yet been published, and 
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we hope to extend them to 15th order with the NFE formalism in the 
future. The analysis used the new threshold estimates from ref. 12. We 
measure ZR = 2.95 _+ 0.05, 2.475 _+ 0.05, and 2.21 -t- 0.02 for d =  3, 4, and 5 
dimensions, respectively. We present the M1 and M2 analyses of the 4D 
series in Fig. 1. From this figure and similar ones for other dimensions it 
is clear that the assumption that )~R has the same correction to scaling as 
the usual percolation susceptibility is correct for d =  3, 4, and 5. Using our 
new 7 and the new scaling results for the other exponents, (12) we find that 
t is equal to 2.02 • 0.05, 2.40_+ 0.03, and 2.74_ 0.03 for d =  3, 4, and 5, 
respectively. (The central estimates were 2.017, 2.396, and 2.738, respec- 
tively. The error bars quoted above reflect the maximal range of values one 
obtains using the maximal error ranges of the measured 7R and the 
exponents in Table I of ref. 12.) The higher-dimension results can be com- 
pared with refs. 52 and 53 and earlier results quoted in Table 2 of ref. 39. 

3.2.2.  The R e s i s t a n c e  D i s t r i b u t i o n .  So far, we have only 
discussed determination of the exponents characterizing the resistance 
moments. However, the full distribution was determined to order e by an 
e-expansion (46) based on the work of ref. 54. In order to check these 
predictions, the universal quantities 

(i)A (J) rC~,(k)~ r(7 ~)) 
(11) 

have been estimated ~46) by the method of ref. 15. This analysis gave 
excellent agreement between the series results and the e-expansion 
predictions (see Table II of ref. 46). 

3.2.3. Nonl inear  Resistance. We next discuss the behavior of a 
network of nonlinear resistors, each of which obeys the generalized Ohm's 
law(47, 55) 

V = r III ~ sign(I) (12) 

where V is the voltage across the resistor, I is the current, and r is the 
nonlinear resistance. In analogy with the linear case, one can define the 
nonlinear resistive susceptibility by )~R(c~)= [~ j  vo.Ro.(o~)]p, where Ru(ct ) is 
the nonlinear resistance between sites i and j. This definition is easily 
generalized for higher moments of the resistance, with the dominant expo- 
nent of the kth moment being denoted in general by ~(~)  and that for 
k = 2  by ~(~) for convenience below. The exponents ~(e)=~(~)/v were 
predicted (47/ to reduce to certain geometrical exponents for particular 
values of ~: ~'(~----, ~ ) ~  1/v, ~'(~= 1)=~'R, ~(0~ ----~ 0 + )  = ~'min, ~"(~ "'+ 0--) = 
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~max, and ~'(~= --1)= De, where DB is the fractal dimension of the back- 
bone of the infinite cluster, and ~min and ~'m~x characterize the scaling of the 
minimal and maximal self-avoiding paths, respectively. Series for )(R(e) 
have been constructed to l l t h  order in general dimension and analyzed 
using the NHDP method. For positive e the series were well behaved, 
while as c~ becomes more negative, the analysis becomes harder and no 
reliable results could be obtained for ~ < -1 .  The resulting exponents ~(~) 
(for e > - 1 )  change continuously between the above predicted values, 
agreeging with previously obtained estimates of these exponents. In the 
whole range - 1 < c~ < oo, ~(c~) was very well approximated by the function 

~(c~) = 1 + ln[1 + a(1 + b -1/~) ca] 13) 

where a, b, and c are fixed by the values of ~(e) for e =  -1 ,  0 +, and 1. 
These results confirm the predictions of ref. 47, and show that the nonlinear 
model, in addition to describing actual physical components, combines 
several geometrical problems, leads to inequalities between their seemingly 
unrelated corresponding exponents, and allows the construction of 
approximants for these exponents. 

3.2.4. Di f fusion on Percolat ing Clusters. Another matter of 
considerable interest is the question of diffusion on a percolating network, 
which can be related to the conductivity by following de Gennes' 
proposal (s6) on the "ant in the labyrinth." To this aim, one can study the 
approach of P~i(t), the probability to start at site i at t = 0 and return to 
it at time t, to its equilibrium value. Let us define the function (48) 

Fav(l)= [~i (Pii(t)-- Pii(~176 ))]p (14) 

and study its moments through the diffusional susceptibilities 

Z~(P) ( k -  1)! dttk-lFav(t)' k>~l (15) 

Using the Einstein relation and scaling, the Xk were predicted to 
diverge with exponents kA~-~, with A~ =7 + /3+  ~R, without referring to 
the actual diffusion mechanism. Two such processes (57) were mainly used in 
the literature: the blind ant, which attempts to hop in all directions with 
equal probability and remains in its place if the chosen bond is vacant, and 
the myopic ant, which chooses randomly one of the available directions. 
Exact relations have been obtained between the diffusional susceptibilities 
for these two ants and resistance correlations. To check these relations, 
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series for the diffusional susceptibilities [Eq. (15)] were constructed both 
directly and by the derived relations with the resistance correlations (which 
are easier to construct computerwise, since they involve matrix inversion 
rather than matrix diagonalization in the direct computation). The two 
approaches led to identical series. Analysis of the series for the blind ant 
gave results for A~ which were consistent with the relation A~ = ~ +/~ + ~R" 
The myopic ant estimates for the exponents agree with the blind ant ones, 
within their error bars. In order to have a more severe check on univer- 
sality, the amplitude ratios for the two ants were compared (see Table III 
of ref. 48) and found to be in excellent agreement with each other, 
confirming the belief that the two ants belong to the same universality 
class. Indications were observed, however, that the myopic ant has larger 
corrections to scaling. These results are also consistent with the above 
mapping between the diffusional susceptibilities and the resistance correla- 
tions. 

3.2.5. Current  Dis tr ibut ion .  In addition to the resistive proper- 
ties of the network, one may study (44) the current distribution in the bonds 
of the network that is induced when a unit current is injected at point j 
and removed at point k. This distribution can be characterized by its 
moments (58'59~ Mq(j, k)= ~b tb'2q, where the sum is over all bonds and ib is 
the current at bond b. The zeroth moment is just the number of backbone 
bonds, the second moment is the resistance between points j and k, while 
the 4th moment is related to the resistance fluctuations. For q ~ oe only 
the singly connected bonds that carry unit current survive in the sum. 

generalized In ref. 44 series were constructed and analyzed for the 
susceptibilities 

)~(q)(p) = [ k ~ v~kMq(j,k)] p (16) 

which have a dominant exponent denoted by "/+O(q). From the 
above relations one has ( ~ = 0 / v )  ~ ( q = 0 ) = D B ,  t~(q=l)=~ 'R,  and 
~ ( q ~  oe)= l/v, where l/v is the fractal dimension of the singly connected 
bonds. (6~ The results indeed indicate that ~(q) changes continuously 
between the above predicted values and is very well approximated by the 
functions (44) 

O(ql=l+(vD B- l ) '  q(~R--1) q (17) 

O(q)= 1 +a/(q+ 1)(q +b)  (18) 

For the negative moments we observed (441 that the critical threshold is 
changing continuously as a function of q. This is due to the fact that these 
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moments are dominated by exponentially large contributions from 
exponentially rare realizations (a situation very similar to that occurring in 
self-avoiding walks on diluted networks). The fact that the negative 
moments are dominated by the tail of the current distribution demonstrates 
that the whole distribution cannot be characterized by the leading scaling 
behavior of the positive moments. (61) The physical relevance of the negative 
moments was pointed out by Redner et a/. (62) 

3.2.6.  L o g a r i t h m s  o f  t h e  M o m e n t s .  The fact that ~(q) does 
not exhibit a constant gap led some groups (59) to the conjecture that the 
distribution of i b may be log-normal, i.e., that the moments of In i b, #o = 
~]b ]ln ihl q, may have a constant gap exponent. To check this conjecture, we 
undertook (45) a series study of/~q. 

In one dimension it has been shown (45) that 

~q = Iln(1 - p)l~q/(1 - p)~ (19) 

exactly, with c = 7 = 1, for both positive and negative moments. 
In order to study the suitability of the functional form of Eq. (19) for 

higher dimensions, we generated 13th-order series for several moments in 
general dimension. The series were analyzed by methods discussed in 
Section 3 and also by several new methods especially tailored to the 
problem at hand. Our methods duplicated the results for one dimension, 
although for the negative moments we found that series of over 20 terms 
were needed for accuracy at q ~  -5 .  The results of the analysis for d >  1 
were consistent with the form of Eq. (19) for 0 < q < 6 ,  but we found c 
values that were a little larger than 1.0 in 2D and 3D. For  other q values 
we do not see a constant gap; this may be due to the shortness of the series 
or to real deviations from a log-normal distribution. A detailed discussion 
will be given in ref. 45. 

3.3. Spin Problems 

Another group of problems that are included in the scope of this 
review are those where the dilution of a spin system leads to some 
interesting new type of behavior. For  some of these systems a two- ( l I T  
and p) or three- ( l / T ,  p, and H -magnetic field) variable series expansion 
can be made, but we shall concentrate below on aspects relating to the p 
expansion or the crossover to this limit. Models of this type for which long 
low-concentration general-dimension expansions have been used include 
the dilute Ising model (DIM), (63) the dilute Edwards-Anderson Ising spin 
glass at zero temperature (TODSG), (19) the dilute random field Ising model 
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(RFIM), (64'65) the dilute antiferromagnet in a uniform field (DAFF), (64'65) 
and the dilute quantum spin-l/2 Heisenberg ferromagnet. (66} The TODSG 
series use the NFE formalism and therefore extend to 15th order, the 
others are l l th  order, excepting the last, which is still in the process of 
generation and may reach further. In some of these problems the threshold 
remains identical to the percolation threshold, in others it varies 
quite considerably. The exponents of the transition likewise remain 
percolation-like or differ. 

3.3.1. Dilute Ising Model .  The dilute Ising model is defined by 
the Hamiltonian 

H = - J , j S ,  S j  (20) 

where the sum is over nearest neighbors, Si is the local Ising spin at site 
i, and Jo are random variables with a binary distribution, P(Jij)= 
p6(J o-  J)+ ( 1 -  p)6(J0), with J >  0. Near the percolation threshold the 
magnetic susceptibility can be written in the scaling form 

)~(p, T)= A(pcI p)- V F(w(pc- p) -~ (21) 

where w=exp(-2J/kT) and 0, the crossover exponent, is equal to unity 
(see, e.g., ref. 67). We studied (63) the crossover function by expanding it in 
powers of w, 

Z(P, T )=  ~ Z,(p)w n (22) 
n = O  

General-dimension series for Z,,(P) have been constructed to l lth order. 
From their analysis, we found that the gap exponent, which is equal 
to 0, is indeed unity in all dimensions. We also found good agreement 
between amplitude ratios involving the Z,, and newly derived e-expansion 
estimates. (63) 

3.3.2. Di lute Zero -Tempera ture  Spin Glass. We u s e  (19) 15th- 
order series expansions to study the critical behavior of the dilute Ising 
spin glass at zero temperature (TODSG) as a function of the concentration 
of occupied bonds p. In the Ising spin glass, nearest-neighbor exchange 
interactions take the values __+_J randomly; in the TODSG they assume the 

822/58/3-4-9 
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values +J ,  0, - J  with probabilities p/2, 1 -  p, and p/2, respectively. We 
have calculated series for the Edwards-Anderson spin-glass susceptibility 
(ZeA = Z j  [ ( S i S j ) ] c ,  where ( . )  denotes the thermal average for a given 
quenched configuration and [-]c denotes the configurational average over 
the exchange interactions) for the TODSG for hypercubic lattices in general 
dimension. 

Analysis of the TODSG series gives (19) the first conclusive numerical 
evidence that Psg (the critical concentration of bonds below which no long- 
range spin glass order occurs) is above the percolation threshold Pc. This 
result holds in all dimensions d~> 2. We observe strong indications that the 
critical exponent of ZEA is distinct from that of percolation. Our results are 
consistent with the scenario that there is a crossover from percolation 
exponents to q =  1/2 state Potts exponents to those of the thermal spin 
glass and this crossover becomes more pronounced as the length of the 
series increases. 

3.2.3. Di lute S p i n - l / 2  Quantum Heisenberg Ant i fer ro-  
magnet .  A recent significant step forward in the development of our for- 
malism is its application to models where the spins have a quantum nature. 
Series for the ground-state energy and staggered magnetization of the 
dilute spin-l/2 quantum Heisenberg model in general dimension have been 
obtained to date (66) through to 9th order and are presently being extended. 
With our present graph tables we have the potential to obtain 13th-order 
series for quantum problems, but limitations of computer resources for the 
necessary matrix diagonalizations may inhibit this potential. 

3.2.4. Di lute An t i f e r romagnet  in a Field and Random Field 
Ising Model. Other dilute systems of interest are the RFIM and the 
DAFF. (64'65) By scaling arguments they should have the same critical 
exponents for d >  1, this exponent being identical with (y - f l ) /2  of usual 
percolation. (64) l l th-order series have been studied for the susceptibility of 
these models using both the NHDP and the graphical methods M1 and 
M2. The former method initially suggested 164/ that while the exponents of 
the two systems appeared to agree for d =  4 and 5, they differed from each 
other at d =  2 and 3. A reanalysis of the series was made in ref. 65 using the 
methods that allowed for the effects of corrections to scaling and then 
current threshold, 7 and /3 values. This reanalysis showed that it was 
important to consider corrections to scaling, and a further comparison with 
the most recent scaling estimates (12~ shows that the exponent estimates are 
consistent with each other and the scaling estimates for d >  2. In 2D we 
find 7pAW agrees with the scaling result, but 7RVIM is a little low. 
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3.4. Other  Problems 

Several other problems on diluted lattices that have been investigated 
by low-concentration series include self-avoiding walks on diluted 
lattices (68) and quantum percolation. (69) 

3.4.1. Se l f -Avoid ing Walks on Percolat ion Clusters. It is 
well known (7~ that the statistics of long self-avoiding walks (SAWs) on an 
undiluted lattice can be obtained in the n ~ 0  limit of the n-state 
Heisenberg-like model. Hence, it can be characterized by two critical 
exponents, such as the exponent 7saw that describes the scaling of the 
number of N-step SAWs with N, and the exponent Vsaw describing the 
scaling of the average end-to-end distance with N. It is easy to show that 
in the presence of dilution, ~s~w does not change. (7~) It is also expected that 
for p >  A., h~w(P) is still given by the pure system value. However, it is 
not clear what happens at p=p<.. Recently there have been some 
suggestions (Ta) that the exponent L ~ w ( p = A )  is still given by the pure 
system value. Real-space and momentum-space renormalization group 
results (68t run counter to this suggestion. In order to check this, 1 lth-order 
series were constructed for 

N r ( K ) = [ Z  voNo . (K)Jp~(pc - -p )  " ~ (23) 

where N,j(K) is the number of steps averaged over all SAWs between sites 
i and j, when each step is weighted by a fugacity K. The ~b varies from ~min 
for small K to ~max for large K, supporting the real-space renormalization- 
group results. According to the latter results, there is a special value of K, 
K0, which describes the average SAW. The analysis at this value leads to 
Vsaw(p = p<.) =- v/r = 0.76 _+ 0.08, 0.67 _+ 0.04, 0.63 _+ 0.02, and 0.54 + 0.02 for 
d =  2, 3, 4, and 5, respectively. These values exclude the pure lattice values 
for d >  2, further substantiating our predictions. 

3.4.2. Quantum Percolat ion and Localization. The quantum 
percolation model (QPM) is defined by the Hamiltonian 

H= ~ V~sli)ijl +h.c. (24) 
<d> 

where ]i> represents a wave function localized near site i and V0, the 
nearest-neighbor hopping matrix elements, are taken from a binary 
distribution P( V0. ) = p6( V~s - 1 ) + ( 1 - p) 6(V•). This model may 
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describe granular materials and mixtures of metal and insulator at low 
temperatures. 

First we constructed series for the quantity X(P) related to the inverse 
participation ratio. We set  (69) 

4) 
where Oe(i) is the amplitude of the wave function ~E at site i. The Z(p) 
should diverge at pq, where a finite fraction of the states becomes extended. 
The analysis led to Pu ~- 0.33 _+ 0.06, 0.20 _+ 0.04, and 0.17 _+ 0.02 in 3, 4, and 
5 dimensions. In d - - 2  there is a trace of a singular behavior in the range 
p = 0.6-0.8. 

In order to obtain more accurate results, we constructed 13th-order 
series for the average transmission coefficient, 

T(p,E)=I~ To(E)]p (26) 

where To.(E ) is the transmission coefficient between points i and j ;  we 
attach one-dimensional perfect leads to points i and j, insert an incoming 
wave with energy E on one lead, and, using the QPM, calculate the 
amplitude of the transmitted wave as a function of E. The series 
(26) should diverge once the localization length diverges, i.e., at the 
delocalization transition. The analysis of these series leads to the critical 
thresholds pq(E=0.05)=0.32+_O.04, 0.22_+0.02, and 0.18_+0.02 in 3, 4, 
and 5 dimensions, respectively. Our results from T are quite close to those 
found from Z(P), but are more accurate. The results of the series for T in 
2D are much more definitive than those for )~(p) of previous works, and 
lead to pu = 0.60 + 0.04. Further checks showed that T(p) has a power law 
singularity at p =  pq in 2D), while the one-parameter scaling theory (73) 
predicts an essential singularity at p = 1. 

There are three scenarios to explain our results: (a) There is a transi- 
tion in 2D between exponential and power law localization. This may not 
contradict the scaling theory. (b) The transition may be peculiar to the 
kind of disorder discussed in our model. (c) The one-parameter scaling 
theory fails, at least in two dimensions. 

4. C O N C L U S I O N S  

We have given some examples of the power of the series expansion 
approach to problems in randomly diluted systems. There are many direc- 
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tions for future work with series expansions. These include the extension of 
the NFE graph tables to higher order, this project being quite within the 
range of current computer capability. Another future direction is the 
generation of long series for multiple moments in two variables in general 
dimension. For some interesting problems of this type rather a lot of com- 
puter time will be needed in order to use all the graphs currently tabulated. 
However, there may be a possibility of vectorization and paralMization of 
part of the algorithms, and future developments in computers will be very 
useful here. 

A final reminder is given that this review has been extremely selective 
in the topics covered. Related topics that we chose not to discuss for 
reasons of space include the series generation method known as the "star- 
graph" expansion. A discussion of this efficient, but not always applicable 
approach can be found in the review by Fisher and Singh. (7) Related 
models for which low-concentration series have been developed in several 
dimensions include directed percolation (recent references to this system 
include Essam et  a/. (74) for 2D and Adler e t  al. (Ts) for higher dimensions) 
and the directed animal enumerations of Duarte. (76) Many low-concentra- 
tion series have been developed in 2D only. Such calculations include series 
for bond bending and central force percolation ~77) and for bootstrap 
percolation (78/and many different lattice animal variants. 
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